

Load and Resistance Factor Design Calibration to Determin a Resistance Factor for the Modification of the Kansas Department of Transportation-Engineering News Record Formula

Report Number: K-TRAN: KU-13-4 • Publication Date: February 2014

Jennifer Penfield Robert Parsons, Ph.D, P.E. Jie Han, Ph.D, P.E. Anil Misra, Ph.D, P.E. *The University of Kansas*

Introduction

The Kansas Department of Transportation (KDOT) has, in recent years, used a variation of the Engineering News Record (ENR) formula to determine the capacity of piles in the field. It was a concern that the KDOT-ENR formula was under-predicting actual pile capacity.

Project Objective

KDOT has used the Pile Driving Analyzer (PDA) in the field since 1986 for at least 246 pile-driving operations. It was consistently noted that the PDA- and CAPWAP-predicted capacity was significantly greater than KDOT-ENR-predicted capacity. Therefore, the objective of this analysis was to compare available KDOT-ENR data to

PDA and CAPWAP data in order to arrive at a revised version of the KDOT-ENR formula.

If the current KDOT-ENR formula consistently under-predicts pile capacity in the field, piles are being driven to a capacity that is overly conservative. By applying a calibrated factor to the existing formula, piles will be credited with reaching the design resistance at shallower depths, resulting in savings on materials and labor.

Project Description

For this study actual ENR resistance estimates were compared with estimates obtained using a pile driving analyzer (PDA) system. The PDA values were taken as the true capacity. There were 175 end-of-drive data points and 189 restrike data points available for statistical analysis.

Project Results

A set of correction (resistance) factors to be used with the ENR formula was developed, with individual factors based on given probabilities of pile failure (capacity being exceeded).

Report Information

For technical information on this report, please contact: Dr. Robert L. Parsons, The University of Kansas Department of Civil, Environmental, and Archtectural Engineering, 2150 Learned Hall, 1530 W 15th Street, Lawrence, Kansas 66045; 785.864.2946; rparsons@ku.edu.

If you have any questions, please email us at library@ksdot.org.

KDOT RESEARCH